A LAKE OR A POND? CULTURE MUDDIES WATERS

Connecticut, with much at stake,

Prefers to call a pool a lake,

But in New Hampshire and beyond

They like to call a lake a pond.

Those lines are from a poem by Phyllis McGinley titled "New England Pilgrimage." If this sounds like a riddle, then my suggestion is that you learn some "cultural geology."

That's what I call the scholarly niche linking New England regional culture to its most neglected science.

The geology is the easy part. The dearth of large natural bodies of water in Connecticut results from the dense network of streams flowing down a well-defined, southeasterly inclined regional slope. The ice sheets slid in the same direction, enhancing the drainage. This is not the case for "New Hampshire and beyond," where the relief is higher, the regional slope less well defined, and the glacial flow much more complex.

The cultural connection is the hard part. Being lake-starved, many small bodies of water in southern New England were historically aggrandized with the name "lake." A good example involves the artificial ponds on UConn's main campus, dubbed Mirror Lake and Swan Lake. In northern New England, however, thousands of perfectly respectable lakes are called ponds because their shoreline geology didn't match the vernacular language of 17th-century English settlers.

To early colonists, lakes were large natural bodies of water, usually with rugged bedrock shores, and with little control or management for human benefit. The lochs of Scotland and those of the English Lake District are good examples. Ponds were smaller, shallower and well-protected bodies of water, usually rimmed by aquatic vegetation, and lacking outcrops and beaches. The English also used the word "pond" for bodies of water raised or regulated by dams, which explains why the phrase "mill pond" is so common and the phrase "mill lake" is never heard.

Legal issues associated with land settlement soon forced a distinction between small ponds, which could be privately owned, and large ones, called "great ponds," which were deemed public property. The 1647 precedent distinguished a public "great pond," which was larger than 10 acres, from a private "pond." During this differentiation process, many bodies of water were either named or renamed "Great Pond." Many other great ponds kept their original name, for example the famed Walden Pond, in Concord, Mass., which is six times larger than necessary to qualify as a great pond.

As settlers spread westward into the northern heartland states, they discovered tens of thousands of water bodies rimmed by mud, sand and gravel that looked like ponds but which were enormous, some exceeding 100,000 acres in area. These could hardly be called "Great Ponds," or even "Great Great Great Ponds." Instead, the colonial distinction between pond and Great Pond evolved into the equally arbitrary American distinction between pond and lake, which was set at 10 acres.

Lawyers and regulators love this arbitrary distinction because it's so easy to measure, despite the fact that it's ecologically meaningless. They do something similar with human developmental stages,
distinguishing adults from juveniles on their 18th birthday, regardless of their behavior. Every parent knows how arbitrary that is.

I'm not a big fan of poetry. But I like the way it compresses so much knowledge into tidy packages in the same way an equation compresses mathematical logic.

McGinley's four enjoyable lines are actually an insightful and extremely pithy commentary that leads to discussion of why dozens of lakes across all six New England states bear the identical official name of "Great Pond," why hundreds of perfectly respectable New England lakes are Ponds with a capitol "P," why UConn President Mike Hogan uses the phrase "Save our Lakes" for his campaign to rescue two polluted campus ponds; why the Environmental Protection Agency's National Lakes Assessment, being released this year, ignores the pond-lake distinction; and why the subtitle of my new book about American lakes couldn't avoid the cumbersome phrase "lakes and ponds."

Whew! That's pretty impressive. So was E=mc^2.